Hier steht ein mäßig langer Titel: Hier steht ebenfalls ein mäßig langer Untertitel Dimensions of Modeling Competence: Investigating the Relationships between Modeling Metaknowledge, Modeling Practices, and Modeling Product
DOI:
https://doi.org/10.11576/zdb-7359Keywords:
models, modelling competence, biology educationAbstract
Modeling is a central component of the scientific endeavor, and modeling competence is defined as one goal of science educa-tion. Pre-service science teachers (PSTs) are expected to develop high modeling competence during their teacher education studies. The modeling competence is divided into three dimensions: modeling metaknowledge, modeling practices, and model-ing product. Although much is known about each of these dimensions, the relationships between them is less studied yet. This project, therefore, investigates these relationships in the context of science teacher education. The study will be conducted in a mixed-method quasi-experimental approach, integrating quantitative and qualitative tools for evaluating PSTs’ modeling me-taknowledge, engagement with the modeling practices, and accuracy and explanatory power of modeling products. Participants will be selected based on a multi-stage purposeful sampling approach: modeling metaknowledge from PSTs will be assessed and nN = 50 PSTs (n = 50) will be selected for participating in a digital modeling task. Here, PSTs will model a biological phenomenon of enzyme activity, whereby their modeling practices and their models’ accuracy and explanatory power will be recorded and evaluated. Following that, PSTs’ modeling metaknowledge will be once more assessed, compared to a control group that did not perform the digital modeling, and relationships between all three dimensions of the modeling competence will be explored. This study thus provides theoretical knowledge about the relationships between the three constituent dimensions of modelling competence. The article introduces the study design as well as the current state of the project.
References
Ammoneit, R., Göhner, M., Bielik, T. & Krell, M. (20234). Why most definitions of modeling competence in science education fall short. Science Education, 108, 443–466.
Bielik, T. & Krell, M. (2021). SageModeler. In M. Kubsch, S. Sorge, J. Arnold & N. Graulich (Hrsg.), Lehrkräfte-bildung neu gedacht. (S.199–202). Münster/New York: Waxmann.
Bielik, T., Opitz, S. & Novak, M. (2018). Supporting students in building and using models. Education Sciences, 8, 1–31.
Bielik, T. & Krell, M. (2021). SageModeler. In M. Kubsch, S. Sorge, J. Arnold & N. Graulich (Hrsg.), Lehrkräfte-bildung neu gedacht. (S.199–202). Münster/New York: Waxmann.
Blömeke, S., Gustafsson, J. & Shavelson, R. (2015). Beyond dichotomies. Zeitschrift Für Psychologie, 223, 3–13.
Cheng, M. & Lin, J. (2015). Investigating the relationship between students’ views of scientific models and their development of models. International Journal of Science Education, 37, 2453–-2475.
Chiu, M. & Lin, J. (2019). Modeling competence in science education. Disciplinary and Interdisciplinary Sci-ence Education Research, 1(1), 1–11.
Fleige, J., Seegers, A., Upmeier zu Belzen, A. & Krüger, D. (2012). Förderung von Modellkompetenz im Biologie-unterricht. MNU Journal, 65(1), 19–28.
Eidin, E., Bielik, T., Touitou, I., Bowers, J., McIntyre, C., Damelin, D. & Krajcik, J. (2023). Thinking in terms of change over time. Journal of Science Education and Technology, 33, 1–28.
Engelschalt, P., Bielik, T., Krell, M., Krüger, D. & Upmeier zu Belzen, A. (2023a). Investigating pre-service science teachers’ metaknowledge about the modelling process and its relation to metaknowledge about models. International Journal of Science Education, 46(7), 691–714.
Engelschalt, P., Röske, M., Penzlin, J., Krüger, D. & Upmeier zu Belzen, A. (2023b). Abductive reasoning in mod-eling biological phenomena as complex systems. Frontiers in Education, 8, 1–17.
Fleige, J., Seegers, A., Upmeier zu Belzen, A. & Krüger, D. (2012). Förderung von Modellkompetenz im Biologie-unterricht. MNU Journal, 65(1), 19–28.
Gobert, J. & Pallant, A. (2004). Fostering students’' epistemologies of models via authentic model-based tasks. Journal of Science Education and Technology, 13, 7–22.
Göhner, M., Bielik, T. & Krell, M. (2022). Investigating the dimensions of the modeling competence among pre-service science teachers. Journal of Research in Science Teaching, 59, 1354–1387.
Göhner, M. & Krell, M. (2018). Modellierungsprozesse von Lehramtsstudierenden der Biologie. Erkenntnisweg Biologiedidaktik, 17, 45–63.
Gouvea, J. & Passmore, C. (2017). ‘Models of’ ’versus ‘Models for’. Science & Education, 26, 49–63.
Göhner, M., Bielik, T. & Krell, M. (2022). Investigating the dimensions of the modeling competence among pre-service science teachers. Journal of Research in Science Teaching, 59, 1354–1387.
Göhner, M. & Krell, M. (2018). Modellierungsprozesse von Lehramtsstudierenden der Biologie. Erkenntnisweg Biologiedidaktik, 17, 45–63.
Göhner, M., Bielik, T. & Krell, M. (2022). Investigating the dimensions of the modeling competence among pre-service science teachers. Journal of Research in Science Teaching, 59, 1354–1387.
Günther, S., Fleige, J., Upmeier zu Belzen, A. & Krüger, D. (2017). Interventionsstudie mit angehenden Lehrkräf-ten zur Förderung von Modellkompetenz im Unterrichtsfach Biologie. In C. Gräsel & K. Trempler (Hrsg.), Entwicklung von Professionalität pädagogischen Personals, (S. 215–236). Wiesbaden: Springer.
Justi, R. & Van Driel, J. (2005). The development of science teachers’' knowledge on models and modelling. International Journal of Science Education, 27(5), 549–573.
Khan, S. (2011). What’s missing in model-based teaching. Journal of Science Teacher Education, 22(6), 535–560.
Koch, S., Krell, M. & Krüger, D. (2015). Förderung von Modellkompetenz durch den Einsatz einer Blackbox. Erkenntnisweg Biologiedidaktik, 14, 93–108.
Konrad, K. (2010). Lautes Denken. In G. Mey & K. Mruck (Hrsg.), Handbuch Qualitative Forschung in der Psychologie, (S. 476–490). Wiesbaden: VS Verlag.
Krell, M. & Krüger, D. (2016). Testing models. Journal of Biological Education, 50(2), 160–173.
Krell, M., Walzer, C., Hergert, S. & Krüger, D. (2019). Development and application of a category system to describe pre-service science teachers’ activities in the process of scientific modelling. Research in Science Education, 49, 1319–1345.
Krüger, D. & Upmeier zu Belzen, A. (2021) Kompetenzmodell der Modellierkompetenz. ZfDN, 27, 127–137.
Lin, J.-W. (2014). Elementary school teachers’` knowledge of model functions and modeling processes. Interna-tional Journal of Science and Mathematics Education, 12, 1197–1220.
Louca, L. & Zacharia, Z. (2012). Modeling-based learning in science education. Educational Review, 64, 471–492.
NGSS Lead States (2013). Next Generation Science Standards: For States, By States. Washington, DC: The National Academy Press.
Nicolaou, C. & Constantinou, C. (2014). Assessment of the modeling competence. Educational Research Re-view, 13, 52–73.
Niebert, K. & Gropengießer, H. (2014). Leitfadengestützte Interviews. In D. Krüger, I. Parchmann & H. Schecker (Hrsg.), Methoden in der naturwissenschaftsdidaktischen Forschung, (S. 121–132). Berlin/Heidelberg: Springer.
Nicolaou, C. & Constantinou, C. (2014). Assessment of the modeling competence. Educational Research Re-view, 13, 52–73.
Onwuegbuzie, A. & Leech, N. (2007). A call for qualitative power analyses. Quality & Quantity, 41, 105–121.
Passmore, C., Gouvea, J. & Giere, R. (2014). Models in science and in learning science: Focusing scientific prac-tice on sense-making. In M. Matthews (Hrsg.), International handbook of research in history, philosophy and science teaching, (S. 1171–1202). Dordrecht: Springer.
Pluta, W., Chinn, C. & Duncan, R. (2011). Learners’' epistemic criteria for good scientific models. Journal of Research in Science Teaching, 48, 486–511.
Ruppert, J., Duncan, R. & Chinn, C. (2019). Disentangling the role of domain-specific knowledge in student modeling. Research in Science Education, 49, 921–948.
Schmidt, S. (2009). Shall we really do it again? The powerful concept of replication is neglected in the social sciences. Review of General Psychology, 13, 90–-100.
Schreier, M. (2012). Qualitative content analysis in practice. London: Sage.
Schwarz, C., Ke, L., Salgado, M. & Manz, E. (2022). Beyond assessing knowledge about models and modeling. Journal of Research in Science Teaching, 59(6), 1086–1096.
Schwarz, C., Reiser, B., Davis, E., Kenyon, L., Achér, A., Fortus, D., Shwartz, Y., Hug, B. & Krajcik, J. (2009). Developing a learning progression for scientific modeling. Journal of Research in Science teaching, 46(6), 632–654.
Schwarz, C. & White, B. (2005). Metamodeling knowledge. Cognition and Instruction, 23, 165–205.
Schwarz, C., Reiser, B., Davis, E., Kenyon, L., Achér, A., Fortus, D., Shwartz, Y., Hug, B. & Krajcik, J. (2009). Developing a learning progression for scientific modeling. Journal of Research in Science teaching, 46(6), 632–654.
Schwarz, C., Ke, L., Salgado, M. & Manz, E. (2022). Beyond assessing knowledge about models and modeling. Journal of Research in Science Teaching, 59(6), 1086–1096.
Sekretariat der Ständigen Konferenz der Kultusminister der Länder in der Bundesrepublik Deutschland [KMK] (2020). Bildungsstandards im Fach Biologie für die Allgemeine Hochschulreife. Hürth: Wolters Kluwer.
Sekretariat der Ständigen Konferenz der Kultusminister der Länder in der Bundesrepublik Deutschland [KMK] (2024). Weiterentwickelte Bildungsstandards in den Naturwissenschaften für das Fach Biologie (MSA).
Sins, P., Savelsbergh, E., van Joolingen, W. & van Hout‐Wolters, B. (2009). The relation between students’ epis-temological understanding of computer models and their cognitive processing on a modelling task. Inter-national Journal of Science Education, 31, 1205–1229.
Trier, U. & Upmeier zu Belzen, A. (2009). „Wissenschaftler nutzen Modelle, um etwas Neues zu entdecken, und in der Schule lernt man einfach nur, dass es so ist.“ Schülervorstellungen zu Modellen. Erkenntnisweg Bio-logiedidaktik, 8, 23–38.
Upmeier zu Belzen, A. & Krüger, D. (2010). Modellkompetenz im Biologieunterricht. Zeitschrift für Didaktik der Naturwissenschaften, 16, 41–57.
Weinert, F. (2001). Vergleichende Leistungsmessung in Schulen. In F. Weinert (Hrsg.), Leistungsmessungen in Schulen, (S. 17–31). Weinheim/ Basel: Beltz.
Wirtz, M. & Caspar, F. (2002). Beurteilerübereinstimmung und Beurteilerreliabilität. Göttingen: Hogrefe.
Yong, E. (2012). Bad copy. Nature, 485, 298–300.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Kim Eleni Lobner, Moritz Krell

This work is licensed under a Creative Commons Attribution 4.0 International License.
The contributions published on our site are available under a Creative Commons Attribution 4.0 International license (CC BY 4.0 de). This license applies only to the original material. All marked third-party content (e.g. illustrations, photos, tables, quotations, etc.) is excluded from the CC license. For their reuse, it may be necessary to obtain further usage permissions from the respective rights holder. URL: https://creativecommons.org/licenses/by/4.0