Biologie lernen durch Concept Mapping: Bedeutung eines Lernstrategietrainings für kognitive Belastung, kognitive Prozesse und Lernleistung – Kurzdarstellung des DFG–Projekts

Jörg Großschedl, Steffen Tröbst

Abstract

ZUSAMMENFASSUNG

Die Beschäftigung mit Biologie erfordert ein Denken in Zusammenhängen. Concept Maps veranschaulichen Zusammenhänge durch Begriffe, die durch beschriftete Pfeile semantisch sinnvoll verbunden sind. Traditionell wird davon ausgegangen, dass die Anfertigung von Concept Maps (sog. Concept Mapping) deshalb lernwirksam ist, weil mit ihr anspruchsvolle kognitive Prozesse der Organisation und Elaboration einhergehen. In jüngster Zeit wurde diese etablierte Vorstellung erschüttert, indem vor allem der Abruf von Informationen aus dem Langzeitgedächtnis für die Lernwirksamkeit des Concept Mapping verantwortlich gemacht wurde. Moniert werden kann, dass in den zugrundeliegenden Studien ausschließlich Lernmaterialien geringen Umfangs verwendet und Concept Mapping nicht trainiert wurde. Das geplante Projekt zielt darauf ab, die berichteten Befunde vor dem Hintergrund dieser beiden Monita kritisch zu prüfen. Aus einer biologiedidaktischen Perspektive dient es der evidenzbasierten Entwicklung eines wirksamen Concept Mapping-Trainings. Aus Perspektive der psychologischen Grundlagenforschung gewährt es Einblick in die kognitiven Prozesse, die die Lernwirksamkeit des Concept Mapping bedingen.

ABSTRACT

Learning biology is characterized by thinking about interrelationships. Concept maps represent interrelationships through concepts connected to each other with labelledarrows. Traditionally, researchers assume that the construction of concept maps (so-called concept mapping) fosters learning by initiating organization and elaboration as complex cognitive processes. Recently, the cognitive basis of the learning efficacy of concept mapping has been questioned as some researchers reasoned that retrieval of information from long-term memory underlies the efficacy of concept mapping. We criticize that the texts to be learned in these studies were comparatively short. Moreover, participants had not been specifically trained in using concept mapping. Our project aims at examining the robustness of the findings reported above. With regard to biology education, we will devise an effective and evidence-based training in concept mapping. From a psychological perspective, the findings will give insight into the cognitive processes that underlie the efficacy of concept mapping as a learning strategy.

Schlagworte

Concept Mapping, kognitive Prozesse, Lernstrategietraining

Volltext:

PDF

Literaturhinweise

Abrams, R., Kothe, D. & Iuli, R. (2006). Meaningful learning: A collaborative literature review of concept mapping. Zugriff am 29.04.2018 unter http://www2.ucsc.edu/mlrg/clr-conceptmapping.html

Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA: Harvard University Press.

Andrews, K. E., Tressler, K. D. & Mintzes, J. J. (2008). Assessing environmental understanding: An application of the concept mapping strategy. Environmental Education Research, 14, 519-536.

Bannert, M. (2003). Effekte metakognitiver Lernhilfen auf den Wissenserwerb in vernetzten Lernumgebungen. Zeitschrift für Pädagogische Psychologie, 17, 13-25.

Blunt, J. R. & Karpicke, J. D. (2014). Learning with retrieval-based concept mapping. Journal of Educational Psychology, 106, 849-858.

Brandstädter, K., Harms, U. & Großschedl, J. (2012). Assessing system thinking through different concept-mapping practices. International Journal of Science Education, 34, 2147-2170.

Campbell, N. A., Heinisch, J. J. & Paululat, A. (2016). Biologie. 10., aktualisierte Auflage. Hallbergmoos: Pearson.

Carpenter, S. K. & Pashler, H. (2007). Testing beyond words: Using tests to enhance visuospatial map learning. Psychonomic Bulletin & Review, 14, 474-478.

Clark, R. E. (1990). When teaching kills learning: Studies of mathematics. In H. Mandl, E. D. Corte, N. S. Bennet & H. F. Friedrich (Eds.), Learning and instruction: European research in an international context (pp. 1-22). Oxford, UK: Pergamon Press.

DeLeeuw, K. E. & Mayer, R. E. (2008). A comparison of three measures of cognitive load: Evidence for separable measures of intrinsic, extraneous, and germane load. Journal of Educational Psychology, 100(1), 223-234.

Friedrich, H. F. (1992). Vermittlung von reduktiven Textverarbeitungsstrategien durch Selbstinstruktion. In H. Mandl & H. F. Friedrich (Hrsg.), Lern- und Denkstrategien: Analyse und Intervention (S. 193-212). Göttingen: Hogrefe.

Friedrich, H. F. & Mandl, H. (1992). Lern- und Denkstrategien – ein Problemaufriß. In H. Mandl & H. F. Friedrich (Hrsg.), Lern- und Denkstrategien: Analyse und Intervention (S. 3-54). Göttingen: Hogrefe.

Großschedl, J. (2010). Einfluss ausgewählter instruktionaler Maßnahmen auf Struktur und Niveau zellbiologischen Wissens [Dissertation]. Berlin: Logos Verlag.

Großschedl, J. & Harms, U. (2013). Effekte metakognitiver Prompts auf den Wissenserwerb beim Concept Mapping und Notizen Erstellen. Zeitschrift für Didaktik der Naturwissenschaften, 19, 375-395.

Großschedl, J. & Harms, U. (2014). Metakognition - Dirigentin des Gedankenkonzerts. In U. Spörhase & W. Ruppert (Hrsg.), Biologie-Methodik - Handbuch für die Sek. I und II (S. 48-52). Berlin: Cornelsen Scriptor.

Hattie, J. (2009). Visible learning: A synthesis of over 800 meta-analyses relating to achievement. London, UK: Routledge.

Hay, D., Kinchin, I. & Lygo-Baker, S. (2008). Making learning visible: The role of concept mapping in higher education. Studies in Higher Education, 33, 295-311.

Heinze-Fry, J. A. & Novak, J. D. (1990). Concept mapping brings long-term movement toward meaningful learning. Science Education, 74, 461-472.

Hilbert, T. S., Nückles, M. & Matzel, S. (2008). Concept mapping for learning from text: Evidence for a worked-out-map-effect. In P. A. Kirschner, F. J. Prins, V. Jonker & G. Kanselaar (Eds.), International perspectives in the learning sciences: Cre8ing a learning world. Proceedings of the Eighth International Conference for the Learning Sciences – ICLS 2008 (Vol. 1, pp. 358-365). Utrecht, The Netherlands: International Society of the Learning Sciences.

Hilbert, T. S. & Renkl, A. (2008). Concept mapping as a follow-up strategy to learning from texts: What characterizes good and poor mappers? Instructional Science, 36, 53-73.

Jüngst, K. L. (1995). Studien zur didaktischen Nutzung von Concept Maps. Unterrichtswissenschaft, 23, 229-250.

Jüngst, K. L. & Strittmatter, P. (1995). Wissensstrukturdarstellungen: Theoretische Ansätze und praktische Relevanz. Unterrichtswissenschaft, 23, 194-207.

Kalyuga, S. (2007). Expertise reversal effect and its implications for learner-tailored instruction. Educational Psychology Review, 19, 509-539.

Kalyuga, S., Ayres, P., Chandler, P. & Sweller, J. (2003). The expertise reversal effect. Educational Psychologist, 38, 23-31.

Karpicke, J. D. & Blunt, J. R. (2011). Retrieval practice produces more learning than elaborative studying with concept mapping. Science, 331, 772-775.

Karpicke, J. D. & Roediger, H. L. (2008). The critical importance of retrieval for learning. Science, 319, 966-968.

Karpicke, J. D. & Smith, M. A. (2012). Separate mnemonic effects of retrieval practice and elaborative encoding. Journal of Memory and Language, 67, 17-29.

Klepsch, M., Schmitz, F. & Seufert, T. (2017). Development and validation of two instruments measuring intrinsic, extraneous, and germane cognitive load. Frontiers in Psychology, 8(1997). doi:10.3389/fpsyg.2017.01997

Kyrieleis, A. (n.d.). Biologie. In Lexikon der Biologie. Heidelberg: Spektrum Akademischer Verlag. Zugriff am 04.02.2018 unter http://www.spektrum.de/lexikon/biologie/biologie/8664

Lehman, M., Smith, M. A. & Karpicke, J. D. (2014). Toward an episodic context account of retrieval-based learning: Dissociating retrieval practice and elaboration. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(6), 1787-1794.

Lohnas, L. J. & Kahana, M. J. (2014). A retrieved context account of spacing and repetition effects in free recall. Journal of Experimental Psychology. Learning, Memory and Cognition, 40(3), 755-764.

Martin, B. L., Mintzes, J. J. & Clavijo, I. E. (2000). Restructuring knowledge in biology: Cognitive processes and metacognitive reflections. International Journal of Science Education, 22, 303-323.

Mayer, R. E. (2002). The promise of educational psychology: Teaching for meaningful learning (Vol. 2.). Upper Saddle River, NJ: Prentice Hall.

Miller, N. L., Cañas, A. J. & Novak, J. D. (2008). Use of the CmapTools recorder to explore acquisition of skill in concept mapping. In A. J. Cañas, P. Reiska, M. K. Åhlberg & J. D. Novak (Eds.), Concept mapping: Connecting educators. Proceedings of the 3rd International Conference on Concept Mapping (Vol. 2, pp. 674-681). Tallinn, Estonia: Tallinn University.

Mintzes, J. J., Cañas, A. J., Coffey, J., Gorman, J., Gurley, L., Hoffman, R., McGuire, S. Y., Miller, N., Moon, B., Trifone, J. & Wandersee, J. H. (2011). Comment on "Retrieval Practice Produces More Learning than Elaborative studying with Concept Mapping" [Technical Comment]. Science, 334, 453.

Mintzes, J. J., Wandersee, J. H. & Novak, J. D. (2001). Assessing understanding in biology. Journal of Biological Education, 35, 118-124.

Nesbit, J. C. & Adesope, O. O. (2006). Learning with concept and knowledge maps: A meta-analysis. Review of Educational Research, 76, 413-448.

Novak, J. D. (1990). Concept maps and Vee diagrams: Two metacognitive tools to facilitate meaningful learning. Instructional Science, 19, 29-52.

Novak, J. D. & Cañas, A. J. (2008). The theory underlying concept maps and how to construct them (Research Report IHMC CmapTools 2006-01 Rev 01-2008). Florida: Institute for Human and Machine Cognition.

Nückles, M., Hübner, S., Dümer, S. & Renkl, A. (2010). Expertise reversal effects in writing-to-learn. Instructional Science, 10, 237-258.

Paivio, A. (1986). Mental representations: A dual coding approach. Oxford, UK: University Press.

Pashler, H., Rohrer, D., Cepeda, N. J. & Carpenter, S. K. (2007). Enhancing learning and retarding forgetting: Choices and consequences. Psychonomic Bulletin & Review, 14, 187-193.

Pearsall, N. R., Skipper, J. E. J. & Mintzes, J. J. (1997). Knowledge restructuring in the life sciences: A longitudinal study of conceptual change in biology. Science Education, 81, 193-215.

Purves, W. K., Sadava, D. E. & Markl, J. (2011). Biologie (9. Aufl.). Heidelberg: Spektrum Akademischer Verlag.

Pyc, M. A. & Rawson, K. A. (2009). Testing the retrieval effort hypothesis: Does greater difficulty correctly recalling information lead to higher levels of memory? Journal of Memory and Language, 60, 437-447.

Quinn, H. J., Mintzes, J. J. & Laws, R. A. (2003). Successive concept mapping: Assessing understanding in college science classes. Journal of College Science Teaching, 33, 12-17.

Roediger, H. L. & Karpicke, J. D. (2006). The power of testing memory: Basic research and implications for educational practice. Perspectives on Psychological Science, 1, 181-210.

Roth, W. M. & Roychoudhury, A. (1993). The concept map as a tool for the collaborative construction of knowledge: A microanalysis of high school physics students. Journal of Research in Science Teaching, 30, 503-534.

Ruiz-Primo, M. A. & Shavelson, R. J. (1996). Problems and issues in the use of concept maps in science assessment. Journal of Research in Science Teaching, 33, 569-600.

Stracke, I. (2004). Einsatz computerbasierter Concept Maps zur Wissensdiagnose in der Chemie. Münster: Waxmann.

Sumfleth, E., Neuroth, J. & Leutner, D. (2010). Concept Mapping – eine Lernstrategie muss man lernen. Chemkon, 17(2), 66-70.

Sweller, J. (2005). Implications of cognitive load theory for multimedia learning. In R. Mayer (Ed.), Cambridge handbook of multimedia learning. New York, NY: Cambridge University Press.

Sweller, J., van Merrienboër, J. J. G. & Paas, F. G. W. C. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10, 251-296.

Tripto, J., Assaraf, O. B. Z., Snapir, Z. & Amit, M. (2017). How is the body’s systemic nature manifested amongst high school biology students? Instructional Science, 45(1), 73-98.

Weinstein, C. E. & Mayer, R. E. (1986). The teaching of learning strategies. In M. C. Wittrock (Ed.), Handbook of research on teaching (Vol. 3, pp. 315-327). New York, NY: Macmillan.

Wetzels, S. A., Kester, L., van Merriënboer, J. J. G. & Broers, N. J. (2011). The influence of prior knowledge on the retrieval‐directed function of note taking in prior knowledge activation. British Journal of Educational Psychology, 81(2), 274-291.

Young, J. Q., Boscardin, C. K., van Dijk, S. M., Abdullah, R., Irby, D. M., Sewell, J. L., Cate, O. T. & O`Sullivan, P. S. (2017). Performance of a cognitive load inventory during simulated handoffs: Evidence for validity. SAGE Open Medicine, 4. doi: http://doi.org/10.1177/2050312116682254

DOI: 10.4119/UNIBI/zdb-v22-i1-340

Copyright (c) 2018 Zeitschrift für Didaktik der Biologie (ZDB) - Biologie Lehren und Lernen