„Bridging the gap“ – Zur Verringerung der Kluft zwischen allgemeinen Lehr-Lernmodellen und konkreter Unterrichtsgestaltung am Beispiel der Förderung dynamischer Problemlösekompetenz in der Biologie

Werner Rieß, Christoph Mischo

Abstract

Die Förderung naturwissenschaftsbezogener Problemlösekompetenz ist ein wichtiges Ziel der naturwissenschaftlichen Ausbildung an Schulen und Hochschulen. Wie aber können entsprechende Kompetenzen evidenzbasiert gefördert werden? Die Autoren referieren zunächst wichtige Merkmale und Konzepte des Problemlösens in naturwissenschaftlichen Kontexten, stellen anschließend Ansätze und Effekte eher instruktivistischer vs. konstruktivistischer Lehr-Lernverfahren zur Förderung von Problemlösefähigkeiten dar und diskutieren die empirische Befundlage kritisch. Auf der Basis vielfach empirisch bewährter Lehr-Lernprinzipien und in Anlehnung an ein Lehr-Lernmodell von Van Merriënboer (2013) entwickeln die Autoren ein Modell problemorientierten Lehrens und Lernens (MopoLL), das die Kluft zwischen bereichsübergreifenden und adressaten- sowie inhaltsunspezifischen Lehr-Lernmodellen einerseits und den Bedürfnissen praktisch Lehrender nach einer Konkretisierung für die Unterrichtsplanung andererseits überbrückt und als Ansatz zur evidenzbasierten Förderung dynamischer Problemlösekompetenz (zumindest) biologischer Inhalte gelten kann. Abschließend werden Desiderata für die weitere Forschung aufgezeigt.

Schlagworte

Problemlösen, Förderung von dynamischen Problemlösekompetenzen, kognitivistische Lernverfahren, konstruktivistische Lernverfahren, Problem-Based-Learning, Inquiry-based teaching, 4C/ID

Volltext:

PDF

Literaturhinweise

Adams, G.L. & Engelmann, S. (1996). Research on direct instruction: 20 years beyond DISTAR. Seattle, WA: Educational Achievment Systems.

Albanese, M. A. & Mitchell, S. (1993). Problem-based learning: A review of literature on its outcomes and implementation issues. Academic Medicine, 68(1), 52-81.

Anderson, J. R. (2007). How can the human mind occur in the physical universe? New York: Oxford University Press.

Anderson, J.R., Reder, L.M. & Simon, H.A. (1996). Situated learning and education. Educational Researcher, 25(4), 5-11.

Barron, B. J., Schwartz, D. L., Vye, N. J., Moore, A., Petrosino, A., Zech, L., Bransford, J. D.& The Cognition and Technology Group at Vanderbilt. (1998). Doing with understanding: Lessons from research on problem- and project-based learning. The Journal of the Learning Sciences, 7, 271-311.

Bertalanffy, L. von (1968). General System Theory: Foundations, Development, Applications. New York: Braziller.

Berthold, K. & Renkl, A. (2010).How to foster active processing of explanations in instructional communication. Educational Psychology Review, 22, 25-40.

Bloom, B.S. (1968). Mastery learning. Evaluation Comment, 1(2), 1-12.

Blumschein, P. (2004). Eine Metaanalyse zur Effektivität multimedialen Lernens am Beispiel der Anchored Instruction. Universität Freiburg [http://www.freidok.uni- freiburg.de//volltexte/1546].

Bransford, J. (1990). Anchored intstruction: Why we need it and how technology can help. In D. Nix & R. Spiro (Hrsg.), Cognition, education and multimedia. Hillsdale/NJ: Erlbaum.

Bräutigam, J. (2014). Systemisches Denken im Kontext einer Bildung für nachhaltige Entwicklung Konstruktion und Validierung eines Messinstruments zur Evaluation einer Unterrichtseinheit. Dissertation, Pädagogische Hochschule Freiburg. http://nbn-resolving.de/urn:nbn:de:bsz:frei129-opus-4387 [Online 26.01.2015].

Bromme, R., Stahl, E., Bartholomé, T. & Pieschl, S. (2004). The case of plant identification in biology: When is a rose a rose? Development of expertise as acquisition and use of robust and flexible knowledge. In H. P. A. Boshuizen, R. Bromme & H. Gruber (Eds.), Professional learning: Gaps and transitions on the way from novice to expert (pp. 29-47). Dordrecht: Kluwer Academic Press.

Brown, J. S., Collins, A. & Duguid, P. (1989). Situated Cognition and the Culture of Learning. Educational Researcher,18(1), 32-42.

Bruner, J. S. (1961). The act of discovery. Harvard Educational Review, 31, 21-32.

Bruner, J.S. (1966). Toward a theory of instruction. New York: Norton.

Chall, J. S. (2000). The academic achievement challenge. New York: Guilford.

Clark, R. E. (2009). Translating research into new instructional technologies for higher education: the active ingredient process. Journal of Computing in Higher Education, 21(1), 4-18.

Collins, A., Brown, J. S. & Newman, S. E. (1989). Cognitive Apprenticeship: Teaching the Crafts of Reading, Writing and Mathematics. In L. B. Resnick (Ed.), Knowing, Learning and Instruction (pp. 453-494). Hillsdale, New Jersey: Lawrence Erlbaum.

Colliver, J. A. (2000). Effectiveness of problem-based learning curricula: Research and theory. Academic Medicine, 75(3), 259-266.

Davis, E. A. & Linn, M. C. (2000). Scaffolding students‘ knowledge integration: prompts for reflection in KIE. International Journal of Science Education, 22, 819-837.

Dennen, V. & Burner, K. (2008.). The cognitive Apprenticeship model in educational practice. Handbook of research on educational communications and technology. (pp. 425-439). Mahwah: Erlbaum.

Dochy, F., Segers, M., Van den Bossche, P. & Gijbels, D. (2003). Effects of problem-based learning: a meta-analysis. Learning and Instruction, 13, 533-568.

Feng, J.‐Y. Chang, Y.‐T., Chang, H.‐Y., Erdley, W., Scott, L. & Chang, Y. (2013). Systematic review of effectiveness of situated e‐learning on medical and nursing education. Worldviews on Evidence-Based Nursing, 10(3), 174-183.

Funke, J. (2006). Komplexes Problemlösen. In J. Funke (Hrsg.), Denken und Problemlösen (=Enzyklopädie der Psychologie, Themenbereich C: Theorie und Forschung, pp. 375-446). Göttingen: Hogrefe.

Furtak, E. M., Shavelson, R. J., Shemwell, J. T. & Figueroa, M. (2012a). To teach or not to teach through inquiry: Is that the question? In S. M. Carver & J. Shrager (Eds.), The journey from child to scientist: Integrating cognitive development and the education sciences (pp. 227–244). Washington, DC: American Psychological Association.

Furtak, E.M., Seidel, T., Iverson, H. & Briggs, D.C. (2012b). Experimental and Quasi-Experimental Studies of Inquiry-Based Science Teaching: A Meta-Analysis. Review of Educational Research, 82(3), 300–329

Gagné, R.M. (1985). The conditions of learning and theory of instruction. New York u.a.: Holt, Rinehart & Winston.

Gijbels, D., Dochy, F., Van den Bossche, P. & Segers, M. (2005). Effects of Problem-Based Learning: A Meta-Analysis from the Angle of Assessment. Review of Educational Research, 75(1), 27-61.

Girault, I. I. & d'Ham, C. (2014). Scaffolding a Complex Task of Experimental Design in Chemistry with a Computer Environment. Journal of Science Education & Technology, 23(4), 514-526.

Gretsch, S., Hense, J. & Mandl, H. (2010). Evaluation eines Schulungsprogramms zur Ausbildung von E-Tutoren. In H.O. Mayer & W. C. Kriz (Hrsg.). Evaluation von eLernprozessen. München: Oldenbourg.

Hammann, M., Phan, T.H. & Bayrhuber, H. (2007). Experimentieren als Problemlosen: Lasst sich das SDDS-Modell nutzen, um unterschiedliche Dimensionen beim Experimentieren zu messen? In M. Prenzel, I. Gogolin & H.-H. Kruger (Hrsg.), Zeitschrift für Erziehungswissenschaft, 10(8), Wiesbaden: VS Verlag, 33-49.

Harris, K. R. & Alexander, P. A. (1998). Integrated, constructivist education: Challenge and reality. Educational Psychology Review, 10, 115–127.

Hattie, J. (2009). Visible Learning.A synthesis of over 800 meta-analyses relating to achievement. London/New York: Routledge.

Hickey, D.T., Moore, A.L. & Pellegrino, J.W. (2001). The motivational and academic consequences of elementary mathematics environments: Do constructivist innovations and reforms make a difference? American Educational Research Journal, 38, 611–652.

Hinds, P. J. (1999). The Curse of Expertise: The Effects of Expertise and Debiasing Methods on Preditions of Novice Performance. Journal of Experimental Psychology: Applied, 5 (2), 205-221.

Hmelo-Silver, C. E., Duncan, R.G. & Chinn, C.A. (2007).Scaffolding and Achievement in Problem-Based and Inquiry Learning: A Response to Kirschner, Sweller, and Clark (2006). Educational Psychologist, 42(2), 99–107.

Holmes, N. G., Day, J., Park, A. H. K., Bonn, D. A. & Roll, I. (2014). Making the failure more productive: scaffolding the invention process to improve inquiry behaviors and outcomes in invention activities. Instructional Science, 42(4), 523–538.

Hoogveld, A. W. M., Paas, F. & Jochems, W. M. G. (2003). Application of an instructional systems design approach by teachers in higher education: individual versus team design. Teaching Teacher Educ., 19, 581–590.

Jacobson, M. J. & Spiro, R. J. (1995). Hypertext learning environments, cognitive flexibility, and the transfer of complex knowledge: An empirical investigation. Journal of Educational Computing Research, 12(4), 301-333.

Janssen-Noordman, A. M. B., van Merriënboer, J. J. G., van der Vleuten, C. P. M. & Scherpbier, A. J. J. A.. (2006). Design of integrated practice for learning professional competences. Med. Teacher, 28(5), 447–452.

Järvelä, S. (1995.). The cognitive apprenticeship model in a technologically rich learning environment: Interpreting the learning interaction. Learning and Instruction, 5, 237-259.

Jonassen, D. H. (2000). Toward a Design Theory of Problem Solving. Educational Technology Research and Development, 48(4), 63-85.

Kalaian, Hripsime A., Mullan, Particia B. & Kasim, Rafa M. (1999).What can studies of problembased learning tell us? Synthesizing and modeling PBL effects on National Board of Medical Examination performance: Hierarchical Linear Modeling meta-analytic approach. Advances in Health Sciences Education, 4, 209-221.

Kalyuga, S., Ayres, P., Chandler, P. & Sweller, J. (2003). The expertise reversal effect. Educational Psychologist, 38(1), 23–31.

Kirschner, P. A. (1992). Epistemology, practicalwork and academic skills in science education. Science and Education, 1, 273–299.

Kirschner, P. A., Sweller, J. & Clark, R. E. (2006). Why Minimal Guidance During Instruction Does Not Work: An Analysis of the Failure of Constructivist, Discovery, Problem-Based, Experiential, and Inquiry-Based Teaching. Educational Psychologist 41(2), 75–86.

Klahr, D. & Dunbar, K. (1988). Dual space search during scientific reasoning. Cognitive Science, 12 (1), 1-48.

Klahr, D., Chen, Z. & Toth, E.E. (2001).From cognition to instruction to cognition: A case study in elementary school science instruction. In K. Crowley, C.D. Schunn & T. Okada (Eds.), Designing for science: Implications from everyday, classroom, and professional settings (pp. 209–250). Mahwah, NJ: Erlbaum.

Klauer, K.J. & Leutner, D. (2007). Lehren und Lernen. Einführung in die Instruktionspsychologie. Weinheim, Basel: BeltzPVU.

Klauer, K.J. (2001). Trainingsforschung: Ansätze, Theorien, Ergebnisse. In K.J. Klauer (Hrsg.), Handbuch Kognitives Training (S. 3-66). Göttingen: Hogrefe.

Kleickmann, T., Tröbst, S., Jonen, A., Vehmeyer, J. & Möller, K. (2016). The Effects of Expert Scaffolding in Elementary Science Professional Development on Teachers’ Beliefs and Motivations, Instructional Practices, and Student Achievement. Journal of Educational Psychology, 108(1), 21–42.

Klieme, E., Funke, J. Leutner, D., Reimann, P. & Wirth, J. (2001). Problemlösen als fächerübergreifende Kompetenz? Konzeption und erste Resultate aus einer Schulleistungsstudie. Zeitschrift für Pädagogik, 47, 179-200.

Koedinger, K.R., Booth, J.L. & Klahr, D. (2013). Instructional complexity and the science to constrain it. Science, 342, 935-937.

Kohlhauf, L., Rutke, U. & Neuhaus, B.J. (2011). Entwicklung eines Kompetenzmodells zum biologischen Beobachten ab dem Vorschulalter. Zeitschrift für Didaktik der Naturwissenschaften, 17, 203-222.

Krapp, A. (2002). Structural and dynamic aspects of interest development: theoretical considerations from an ontogenetic perspective. Learning and Instruction, 12(4), 383-409.

Krell, M., Upmeier zu Belzen, A. & Krüger, D. (2014). Student´ s levels of understanding models and modelling in biology: Global or aspect-dependent? Research in Science Education, 44 (109-132.

Kulak, V. & Newton, G. (2015). An Investigation of the Pedagogical Impact of Using Case-Based Learning in a Undergraduate Biochemistry Course. International Journal of Higher Education, 4(4), 3-24.

Kulik, C.L.C., Kulik, J.A. & Bangert-Drowns, R.L. (1990). Effectiveness of mastery learning programs: A meta-analysis of findings. Review of Educational Research, 53(3), 397-414.

Leary, H., Walker, A., Shelton, B.E. & Fitt, M.H. (2013). Exploring the Relationships Between Tutor, Background, Tutor Training, and Student Learning: A Problem-based Learning Meta-Analysis. Interdisciplinary Journal of Problem-based Learning, 7(1), 40-66.

Leutner, D. (2001). Instruktionspsychologie. In D. Rost (Hrsg.), Handwörterbuch Pädagogische Psychologie (S. 267-276). Weinheim: Beltz/PVU.

Leutner, D., Fleischer, J., Wirth, J., Greiff, S. & Funke, J. (2012). Analytische und dynamische Problemlösekompetenz im Lichte internationaler Schulleistungsvergleichs-studien. Psychologische Rundschau, 63(1), 34–42.

Lott, G. W. (1983). The effect of inquiry teaching and advance organizers upon student outcomes in science Education. Journal of Research in Science Teaching, 20, 437-451.

Loyens, S. M. M. & Gijbels, D. (2008). Understanding the effects of constructivist learning environments: introducing a multi-directional approach. Instructional Science, 36, 351-357.

Mayer, J. & Ziemek, H.-P. (2006). Offenes Experimentieren - Forschendes Lernen im Biologieunterricht. Unterricht Biologie, 317(30), S. 4-12.

Mayer, J. (2007). Erkenntnisgewinnung als wissenschaftliches Problemlösen. In D. Krüger & H. Vogt (Hrsg.), Handbuch der Theorien in der biologiedidaktischen Forschung (S. 177-186). Berlin/ Heidelberg: Springer.

Mayer, R. (2004). Should there be a three-strikes rule against pure discovery learning? The case for guided methods of instruction. American Psychologist, 59, 14–19.

Mayer, R. E. (1997). Thinking, problemsolving, cognition. New York: Freeman.

Merrill, M. D. (2000). Instructional Transaction Theory (ITT): Instructional Design Based on Knowledge Objects. In C.M. Reigeluth (Ed.), Instructional-Design Theories and Models: A New Paradigm of Instructional Theory. Mahwah, NJ: Lawrence Erlbaum Associates.

Merrill, M.D. (2002). First Principles of Instruction. Educational Technology Research and Development 50(3), 43-59.

Moreno, R. (2004). Decreasing cognitive load in novice students: Effects of explanatory versus corrective feedback in discovery-based multimedia. Instructional Science, 32, 99–113.

Moseley, D., Baumfield, V., Elliott, J., Higgins, S., Miller, J. & Newton, D.P. (2005). Frameworks for Thinking: A Handbook for Teachers and Learning. Cambridge: Cambridge University Press.

Neber, H. & Anton, M.A. (2008). Forderung präexperimenteller epistemischer Aktivitäten im Chemieunterricht. Zeitschrift für pädagogische Psychologie, 22 (2), 143-150.

Neber, H. (2001). Entdeckendes Lernen. In D. Rost (Hrsg.), Handwörterbuch Pädagogische Psychologie (S. 115-121). Weinheim: BeltzPVU.

Nickerson, R. S. (2001). The projective way of knowing: A useful heuristic that sometimes misleads. Current Directions in Psychological Research, 10, 168-172.

Reigeluth, C. M. (1999). The elaboration theory: guidance for scope and sequence decisions. In Instructional-Design Theories and Models. A New Paradigm of Instruction, edited by C. M. Reigeluth, pp. 425–453. Mahwah, NJ: Lawrence Erlbaum Associates.

Reigeluth, C.M. & Stein, F.S. (1983). The elaboration theory of instruction. In C.M. Reigeluth (Ed.), Instructional design theories and models: An overview of their current status (pp. 335-382). Hillsdale, NJ: Erlbaum.

Reigeluth, C.M. (1979). In search of a better way to organize instruction: The elaboration theory. Journal of Instructional Development, 2, 8-15.

Reinmann-Rothmeier, G. & Mandl, H. (2006). Unterrichten und Lernumgebungen gestalten. In A. Krapp & B. Weidenmann, B. (Hrsg.), Pädagogische Psychologie. Ein Lehrbuch (S. 613 – 658). Weinheim: Beltz.

Rempfler, A. & Uphues, R. (2011). Systemkompetenz und ihre Förderung im Geographieunterricht. Geographie und Schule, 33(189), 22-33.

Renkl, A., (2014). Towards an instructionally-oriented theory of example-based learning. Cognitive Science, 38, 1–37.

Roelle, J., Berthold, K. & Renkl, A. (2014).Two instructional aids to optimise processing and learning from instructional explanations. Instructional Science, 42(2), 207-228.

Roll, I., Holmes, N., Day, J. & Bonn, D. (2012). Evaluating metacognitive scaffolding in guided invention activities. Instructional Science, 40(4), 691–710.

Rosenshine, B. (2009). The Empirical Support for Direct Instruction. In S. Tobias & T.M. Duffy (eds.), Constructivist Instruction (pp. 201-220). New York: Routledge.

Rotgans, J.I. & Schmidt, H.G. (2014). Situational interest and learning: Thirst for knowledge. Learning and Instruction. 32, 37-50.

Rybarczyk, B.J., Baines, A.T., McVey, M., Thompson, J.T. & Wilkins, H. (2007). A case-based approach increases student learning outcomes and comprehension of cellular respiration concepts. Biochemistry and Molecular Biology Education, 35, 181-186.

Sarfo, F.K. & Elen, J. (2008). The moderating effect of instructional conceptions on the effect of powerful learning environments. Instructional Science, 36.137–153.

Savery, J.R. (2006). Overview of Problem-based Learning: Definitions and Distinctions. Interdisciplinary Journal of Problem-based Learning, 1(1), 9-20.

Scherer, R. (2012). Analyse der Struktur, Messinvarianz und Ausprägung komplexer Problemlösekompetenz im Fach Chemie – Eine Querschnittstudie in der Sekundarstufe I und am Übergang zur Sekundarstufe II. Berlin: Logos.

Scherer, R. (2014). Komplexes Problemlösen im Fach Chemie: Ein domänenspezifischer Zugang. Zeitschrift für Pädagogische Psychologie, 28, 181-192.

Scherer, R. & Tiemann, R. (2012). Factors of problem-solving competency in a virtual chemistry environment: The role of metacognitive knowledge about strategies. Computers & Education, 59, 1199-1214.

Schroeder, C. M., Scott, T. P., Tolson, H., Huang, T.-Y. & Lee, Y.-H. (2007). A metaanalysis of national research: Effects of teaching strategies on student achievement in science in the United States. Journal of Research in Science Teaching, 44, 1436-1460.

Seel, N.M. (1999). Instruktionsdesign: Modelle und Anwendungsgebiete. Unterrichtswissenschaft, 27, 2-11.

Seidel, T., Rimmele, R. & Prenzel, M. (2005). Clarity and coherence of lesson goals as a scaffold for student learning. Learning and Instruction, 15(6), 539-556.

Shymansky, J. A., Hedges, L. V. & Woodworth, G. (1990). A reassessment of the effects of inquiry-based science curricula of the 60’s on student performance. Journal of Research in Science Teaching, 27, 127–144.

Smits, P.B.A., Verbeek, J.H.A.M. & de Buisonjé, C.D. (2002).Problem based learning in continuing medical education: a review of controlled evaluation studies. British Medical Journal, 324, 153-156.

Strobel, J. & van Barneveld, A. (2009). When is PBL More Effective? A Meta-synthesis of Meta-analyses Comparing PBL to Conventional Classrooms. In: Interdisciplinary Journal of Problem-based Learning 3(1), 44-58.

Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12, 257–285.

Sweller, J., Kirschner, P.A. & Clark, R.E. (2007). Why Minimally Guided Teaching Techniques Do Not Work: A Reply to Commentaries. Educational Psychologist, 42(2), 115–121.

Taconis, R. (1995). Understanding-based problem solving. Doctoral dissertation, Eindhoven University of Technology, Eindhoven/Amsterdam, The Netherlands.

Taconis, R. Ferguson-Hessler M.G.M. & Broekkamp H. (2001).Teaching Science Problem Solving: An Overview of Experimental Work. Journal of Research in Science Teaching, 38(4), 442–468.

Van de Pol, J.E. (2012). Scaffolding in teacher-student interaction: exploring, measuring, promoting and evaluating scaffolding. FMG: Research Institute Child Development and Education (CDE). PhD thesis. http://hdl.handle.net/11245/2.110501[05.03.2016]

Van Merriënboer, J. & Kirschner, P.A. (2007). Ten Steps to Complex Learning - A Systematic Approach to Four-Component Instructional Design. Lawrence Associates Publishers.

Van Merriënboer, J. J. G. & Kester, L. (2008). Whole-task models in education. In J. M. Spector, M. D. Merrill, J. J. G. van Merriënboer, & M. P. Driscoll (Eds.), Handbook of research on educational communications and technology, (pp. 441–456). Mahwah, NJ: Erlbaum/Routledge.

Van Merriënboer, J. J. G. & Sweller, J. (2005). Cognitive load theory and complex learning: recent developments and future directions. Educational Psychology Review,17,147–177.

Van Merriënboer, J.J.G. (1997). Training complex cognitive skills. Englewood Cliffs: Educational Technology Publications.

Van Merriënboer. J (2013). Perspectives on problem solving and instruction. Computers & Education, 64, 153-160.

Van Merriënboer. J., Clark. R.E. & de Croock. M.B.M. (2002). Blueprints for Complex Learning: The 4C/ID-Model. Educational Technology Research and Development, 50(2), 39-64.

Vernon, D. T. & Blake, R. L. (1993). Does problem-based learning work? A meta-analysis of evaluative research. Academic Medicine, 68(7), 550–563.

Walberg, H.J. & Wang, M.C. (1987).Effective educational practices and provisions for individual differences. In M.C. Wang, M.C. Reynolds & H.J. Walberg (Eds.), Handbook of special education (pp. 113-128). Oxford: Pergamon Press.

Walker, A. & Leary, H. (2009). A problem based learning meta-analysis: Differences across problem types, implementation types, disciplines, and assessment levels. Interdisciplinary Journal of Problem Based Learning, 3(1), 6–28.

Wellnitz, N. & Mayer, J. (2013). Erkenntnismethoden in der Biologie – Entwicklung und Evaluation eines Kompetenzmodells. Zeitschrift für Didaktik der Naturwissenschaften, 19, 315-345.

Wenger, E. (2007). 'Communities of practice. A brief introduction'. Communities of practice [http://www.ewenger.com/theory/.Accessed January 14, 2009].

Wild, E., Hofer, M. & Pekrun, R. (2001). Psychologie des Lerners. In A. Krapp & B. Weidenmann (Hrsg.), Pädagogische Psychologie (S. 207-270). Weinheim: Beltz PVU.

Willett, J.B., Yamashita, J.J.M. & Anderson, R.D. (1983). A meta-analysis of instructional systems applied in science teaching. Journal of Research in Science Teaching. 20(5), 405-417.

Williams-Glaser, C., Rieth, H. J., Kinzer, C. K., Prestidge, L. K. & Peter, J. (1999). A description of the impact of multimedia anchored instruction on classroom interactions. Journal of Special Education Technology,14(2), 27–53.

Wittwer, J. & Renkl, A. (2008). Why instructional explanations often do not work: A framework for understanding the effectiveness of instruction explanations. Educational Psychologist, 43, 49-64.

Wood, D., Bruner, J. & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry and Allied Disciplines, 17, 89-100.

Zhen, R. (2010). Effects of situated learning on students’ knowledge acquisition: An individual differences perspective. Journal of Educational Computing Research, 43(4), 467-487.

Zydney, J. M., Stegeman, C., Bristol, L. & Hasselbring, T.S. (2010). Improving a multimedia learning environment to enhance students’ learning, transfer, attitudes, and engagement. International Journal of Learning Technology, 5, 147–165.

DOI: 10.4119/UNIBI/zdb-v20-i1-332

Copyright (c) 2017 Biologie Lehren und Lernen – Zeitschrift für Didaktik der Biologie